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Abstract

We present parallel algorithms for fast polynomial interpolation. These algorithms can
be used for constructing and evaluating polynomials interpolating the function values and
its derivatives of arbitrary order (Hermite interpolation). For interpolation, the parallel
arithmetic complexity is O(log? M + log N) for large M and N, where M — 1 is the order
of the highest derivative information and N is the number of distinct points used. Unlike
alternate approaches which use the Lagrange representation, the algorithms described in this
paper are based on the fast parallel evaluation of a closed formula for the generalized divided
differences. Applications to the solution of dual Vandermonde and confluent Vandermonde
systems are described. This work extends previous results in polynomial interpolation and
improves the parallel time complexity of existing algorithms.



1 Introduction

Fast algorithms (serial complexity less than O(N?) and parallel complexity less than O(N)
for N input pairs) and asymptotic bounds for polynomial interpolation using as information
the value of a function at N distinct points (called simply interpolation from here onwards)
have been presented by many researchers in the literature [1, 4, 15, 20, 23]. In [8] the authors
presented a new algorithm for the fast calculation of the divided difference coefficients of the
Newton representation for the interpolating polynomial. The method has parallel complexity’
2[log N + 2 and is based on the parallel prefix algorithm? ([21] and Appendix A).

In this paper we investigate the more general problem of Hermite interpolation, where the
input is a set of distinct points and corresponding to each point, prescribed values for a function
f and all its derivatives up to some arbitrary order. We show that for large M and N, the
computation of the corresponding interpolating polynomial has parallel complexity O(log? M +
log N), where M — 1 is the order of the highest derivative information and N is the number of
distinct points used in the interpolation. Qur construction is based on a fast algorithm for the
evaluation of all the required polynomial coefficients, the generalized divided differences.

The resulting upper bound extends and improves previous work for polynomial interpolation.
Table 1 compares the current computational complexity results for polynomial interpolation.

Non-osculatory

Representation Sequential | Ref. Parallel | Ref.

Lagrange O(Nlog? N) | [20] O(log N) | [23, 2]

Newton O(N?) | [18] 2log N + 2 | [8], Cor. 4.2
Osculatory

Lagrange-Hermite | O(nlogn(log N + 1)) | [4]
Newton O(n?) | [29] O(s(M)log N) | [7]
O(log N + log®> M) | Thm. 4.1

Table 1: Complexity estimates for polynomial interpolation (s(M) is exponential function of M
and n is defined in Eq. (1)).

When N = M the interpolation can be done in O(log? N) parallel steps, whereas when M = 1
(i.e. no derivatives are involved) the complexity is O(log N). We show that the algorithm for
the latter case of M =1 is identical with the one presented by the authors in [8]. Recently, the
authors have presented another parallel algorithm for Hermite interpolation based on algebraic
arguments ([7]), which has parallel complexity O(log N) for M fixed. Nevertheless, as mentioned
in that paper, in this case the order of complexity depends exponentially on M, if M is allowed
to vary. Consequently, what we present here is a substantial improvement over [7] in terms of
theoretical parallel time complexity.

It could be argued that an actual implementation of the proposed algorithm is impractical,
since, as is well known, by the time the size of the problem becomes large enough to justify
the use of parallelism, polynomial interpolation may break down. We note however that as is

!The complexity counts give the number of parallel (elementary) arithmetic operations, which we take to be
over the real field for consistency.
2 All logarithms are base 2.



mentioned in Section 7, certain point arrangements will delay this breakdown. Results in [8]
indicate that at least Newton non-osculatory interpolation based on the proposed algorithm for
these special points could be of some practical value.

We also remark that the parallel arithmetic complexity of O(log? M + log N) operations
achieved by our algorithm may require a large (but polynomial in the input size) number of
processors. Thus its sequential implementation will be less efficient than standard serial algo-
rithms for interpolation. The issues of exact processor count and processor — time tradeoffs for
our algorithm are left for future discussion and not addressed here.

Section 2 introduces notation and describes the problem. In Section 3 (Lemma 3.1) the
appropriate representation of the GDD (from the point of view of the interpolation algorithm)
is introduced. The material in Section 4 culminates in Theorem 4.1, proving the main result.
Section 5 contains a brief discussion on polynomial evaluation. Finally, Sections 6 and 7 respec-
tively, contain applications and conclusions.

2 Notation and description of the problem

We are given as input a set of distinct points {z,;¢ =0,..., N — 1} and for each of these points

a set of values f,gk) with £ = 0,1,...,p; — 1 for p, € Z*, where Z* denotes the set of positive
integers. We define the multiplicity vector p of the input as

P= (pOa"' apN—l)-

Based on this information, we are required to construct a polynomial P of degree n — 1 where
N-1
n = Z Pq (1)
q=0
such that

fék):P(k)(zq); k=0,....,p4—1;,¢=0,...,N—1. (2)

Here P(k)(zq) denotes the derivative of order k of the polynomial P evaluated at the point z,.

The existence and uniqueness of such a polynomial is well known [5]. For the construction
and representation of P two distinct approaches may be followed: the Lagrange-Hermite ([28])
approach and the (generalized) divided difference approach. Here we follow the latter. In the
simple case of p; = 1 for all ¢ and n = N, the polynomial is written in its Newton form

n—1 qg—1
P(S) = Z f[zo,...,zq] H(S - Zj) ) (3)
q=0 Jj=0

where the coefficients of the monomial products are the divided differences that are usually
constructed recursively by means of tables. These constructions however are sequential in nature
and require O(n) parallel arithmetic operations. An alternative method is to use a closed linear
formula for each of the divided differences and evaluate them all in parallel by utilizing the
properties of the parallel prefix algorithm. With a slight change of wording, a main result of [8]
is the following Theorem.

Theorem 2.1 The divided difference coefficients of the Newton interpolating polynomial for N
points can be computed in at most 2[log N'| + 2 parallel arithmetic steps.



In the general case treated in this paper, there may be more than one datum of information
per point z;. Hence the definition of the divided differences has to be extended to cover this
case. This is done by taking the limit of the ratios defining the divided differences for equal
arguments. In particular, considering now points zy < --- < z,, (not necessarily distinct and
coincident in groups with individual z,s) define

I
f[wq,...,zq_,_k} = F (4)
when z, = 44y, and
Ji _ f[wq+1,...,xq+k] - f[;cq,...,wq+k_1] (5)
[Ty sTq 1] Tgtk — Tq

otherwise. These are the generalized divided differences (GDD) whose fast evaluation we seek.
As with the simpler case of Newton interpolation, the maximum speedup is limited when these
definitions are applied directly for the construction of the GDD.

Define a sequence of n + 1 index-of-multiplicity vectors ¢;, each of dimension N as follows:
For 0 <7 < py,

t = (3,0, ... ,0).
Otherwise if
po<i=po+...+p1+B<po+...pn1=n
for 1 < <p;and B € ZT, then
t; = (pos---,01-1,5,0,...,0) .

Denote the I component of t; by by ;. For each i, let Q(i) denote the smallest index such
that ¢;; = 0 for | > Q(i). Also put z = (20,...,2n-1) and define

tio ti,N—1
e ——f
2zt = (Z(),...,ZO,...,ZNfl,...,ZNfl),
which we will also write as
zt; = (20(ti),---,2n—1(tin-1)) -

Clearly the vector sequence t; is non decreasing in its components and (componentwise)

ti<t, = (po,---,PN-1)

The vectors t; provide in increasing order the power index of the factors (s — z;) in the
Newton representation of P. Define

w®)(s) = T (s = =)' , (6)



and

, wlt) (s)
’w((]tv,)(s) = ( )tzq
N—
= H S—Zl
=0
l#q

The Hermite interpolating polynomial can then be written in the form

n

P(s) = Y fraagw1(s) . (7)
1=1
The coefficients f|, ;) in Eq. (7) are the GDD and we seek their fast evaluation for 1 <14 < n.
For example, suppose the interpolation information consists of three distinct points {2y, 21, 22}

and functional and derivative information corresponding to the multiplicity vector p = (2,1, 3).
Then n = 6 and

to 000
t1 100
to 200
n 211
ts 212
te 213
w(s) = 1
w™(s) = (s—z)
w(tz)(s) = (s— zo)2
w(ta)(s) = (s — z0)2(8 — z1)
w(t4)(s) = (8 — 20)2(8 - Zl)(s - 22)
w(ts)(s) = (s— z0)2(3 —z1)(s — z2)2
w(te)(s) = (s— z0)2(s —z1)(s — Z2)3 )
and
P(s) = fiao] + S1z0,200(8 = 20) + flz0,20,011(8 — 20)” + Stz0,20,m,221 (8 = 20)*(s — 1)

+ f[Z(),ZO,Zl,Z2,22](S - 20)2(3 - 21)(8 - 22) + f[za,za,h,zz,zz,zz](s - 20)2(3 - Zl)(S - 22)2

3 Representation of the Generalized Divided Differences

The elementary definition of the (generalized) divided differences is that they are the coefficients
of the Newton representation of the interpolating polynomial. Since a different wording of the
objective of polynomial interpolation is to construct a polynomial P which interpolates some
function f for which we have functional and derivative information available, we identify the
given datum fé with d % f(2¢). We denote by D" the differentiation operator applied r times
with respect to the underlylng variable.



Lemma 3.1 Let f be analytic in a simply connected region Q2 and let C be a rectifiable Jordan
curve lying in Q. Suppose the points zy for ¢ =0,...,N — 1 lie in the interior of C. Then the
GDDs of f are given by

- : P ’n. ( )

Proof It can be shown ([11, 6]) that

1 f(s)
fz 30 )3 92 N — '3 — = —%\ ) — dS
[z0(ti0) 52N —1(ti,n—1)] 2m Jo H;?:(Q 1(8 — zj)ti

where C is a closed contour enclosing all points z; [5, 6, 11]. From the Residue Theorem ([13])

f[ztl] = Q%l # lDtiq—l (s t zq)tz’qf(s) ‘| )

= (tig—1)! 1Y, (s — =)t

with zeros being contributed to the sum whenever ¢;, = 0. From Leibnitz’s rule for the derivatives
of a product

.fz.i — s ( iq ) f(tiq—l—r)(z ) D" _
[=ti] EO (tig — 1)! 20 r a =0 (s — z)ta
l#4q 5=24
which is the result as seen in Eq. (8). O

To remain consistent with the previous discussions and complexity counts we consider real z;s.
It is however trivial to adapt the discussion for the complex field. In fact, all our results are
equally valid for complex interpolation if we change the elementary operation unit to be defined
over the complex field.

From Eq. (8) it also follows that the GDD can be viewed as a linear transformation on R"

i=G¢ , 9)
where

6= (f[z.t1]7 SRR f[z.tn})Ta

¢: (f07"'7 épo*l)afla"'afN—l,..., ](5717\1171*1))’]“'

Here G is the lower block triangular matrix

Ly 0 0
Lo Ly 0 0
Lo .

Ly_1p9 Lny-11 -+ Ln-an-1 Ly-1n—1



in which L;; € R®Pi*Pi and the L;; are lower triangular. In particular Ly is the diagonal matrix

O =
o [l
o

1
(po—1)!

For example, when p; = 1 for all 7 (the non-confluent case) each L;; is reduced to a scalar
and G is of order N. When N =1, then G reduces to L.

It is central to this paper that the construction of the divided differences is reducible to the
fast computation of Eq. (9). We distinguish two steps:

1. The computation of all elements of G (assembly phase).
2. The matrix-vector multiplication in Eq. (9).

We can already see that the time for step 2 is at most O(logn), or in terms of M and N,
O(log N + log M). In the subsequent sections we shall see how to obtain a fast algorithm for
assembly step 1 and its combination with step 2.

4 Results and algorithm description

The arguments in this Section lead to a constructive proof of the main complexity result pre-
sented in Theorem 4.1.
For the moment let

for any z, with

1
(ti)(

agt")((); x) =
wg '’ (z)

To motivate our discussion we examine in some detail the example started in Section 2. From
Lemma 3.1 it follows that:

fietn) = f(=0)
flzo) 11, fM(z)1
izt = 1!00! Dy + 0!1!0 1

_ f(=0) 1 fO(z) 1 f(z1) 1
fztal = Ty [D ]s:zo+ 0Nl 20—z ' OW! (21 — 20)?



Using a as in Eq. (10) above, the matrix G in this case is

1 0
0 & 0
03 (lz0)  ag® (0z0) |, (13) g ) 0
(t4)'(01'20) (t40)'(10'z0) agm)(o;zl) (t4)(0 2) 0
a(()t5)'(01';ZO) (t50)'(10'20) {85 (0; 21) aéi)!(ol!;zz) agt5g!(3;z2) 0

The evaluation of G is centered around the evaluation of each of the blocks Lg.. Lemmas 4.1

and 4.2 demonstrate that for given g and ¢ (i.e. in a given row of block Ly, ), the terms al(f") (73 24)
satisfy a linear recurrence in r. To solve each of these recurrences, their coefficients and initial
values must first be evaluated (Lemma 3.1 and Corollary 4.1). The recurrences are then solved
as described in Lemma 4.3. Finally all of these steps are put together in the description of the
algorithm in the proof of Theorem 4.1.

The proof of the following Lemma follows trivially after application of the rules of differen-
tiation.

Lemma 4.1 Fori=1,...,nand ¢q=0,...,N — 1, define

N—-1

(tz) — til
HOED e (1)
l#q

where the sum is empty (and equal to 0) when N = 1. Then for j > 1
(t:) (t:)
Do, 7 (s) = (=j)og41(s)

(I1.7+1

From this Lemma it immediately follows that
Do, (s) = (1) Moyl (5) -
Lemma 4.2 Whenr > 1

ol B el o

Wq

Proof Differentiating

1 1 ;
T(s)) = _T(s) (561)(3)

Wq Wq

with ¢ defined as in Lemma 4.1, we see that the Lemma is valid for r = 1. What we have here
is an expression for the derivative as a product of two known functions. Applying Leibnitz’s
theorem for the higher derivatives of a product of functions, it follows that for > 1

1 U(t’)(s)
D’r‘ — DT 1
(wff”(s>) (wé“’(s>)
_ _z< ) Do o
wg (8



and using Lemma 4.1

r—1
7"—1 ] . " r—1—1
- 2:( ; )(—1)J+la!o§f}+1<s)D l
§=0

Evaluating at z; the result follows. O

1
i) (s)

) .

From Lemma, 3.1, we seek an algorithm for the fast evaluation of Eq. (8) as ¢ varies from 1 to
n. By substituting the expression derived in Lemma 4.2 for the derivatives in Eq. (8), it seems
that for the computation of each one of the GDD, a triple summation is required. However
we next show that a combination of fast algorithms can be used to achieve a much more rapid
evaluation.

From Lemma 4.2, for r > 1

r—1
ac(lti)(r; zq) = Z A(]a q,7, tia Zq)agti) (’I' -1- .75 Zq) (13)
=0
where
, ; r—1)! ;
MG aor i) = (19 D50 (14
(r—1—j)!
are the interaction coefficients.
Lemma 4.3 Consider the array
o () o\ (z) oSV () . oW (av-1)
00) () 017 (z1) 03 (z2) - oWy s(an-)
o) . c oW (o) (15)
U(()f;-’)(zo) Ugf;-‘)(zl) O'gf;)(ZQ) ) 05\?1)1’]-(ZN—1)
Each array element J(Sf;-) (z¢) as defined in Eq. (11) represents the finite sequence
{03 z0), - o, -1 (20)}- (16)

In particular the sequence is empty if t;q < 1. Let M be the mazimum of {po,...,pn-1}. Then
all sequences defined as in Eq. (16) for each array element of Eq. (15) can be evaluated in
O(log M + log N) parallel operations.

Proof First observe that across the array in Eq. (15) each of the ¢;;’s takes all integer values
from 0 to t,; < p; < M. Similarly j assumes values from 1 to ¢;; —1. From Eq. (11) the elements
in Eq. (16) for every array entry are based upon linear combinations of terms

(24 — zl)l, R zl)t”q_1 ; (17)

The evaluation of all such terms can be achieved in O(log t,4) steps by means of the parallel prefix
algorithm (Theorem A.1). By applying N(N — 1) concurrent instances of the same algorithm
(for each g and each [) and noting that ¢,, = p, the evaluation of all the terms in Eq. (17) can
be done in less than [log M| parallel steps. The required divisions for Eq. (11) can be achieved
in a single parallel step. Finally the additions require at most O(log N) steps. Hence the result
follows. O

10



The first step in the evaluation of the GDDs from Eq. (8) consists of the calculation of all
interaction coefficients A(j, q,7,t;, zq)-

Corollary 4.1 With M as defined above, the calculation of all
A7, ¢, ti,2g) ; 0<j<r—-1,0<¢g<N-1;1<i<n
forr=1,...,tig — 1 can be carried out in O(log N + log M) parallel steps.
Proof At first all of the differences
zp—2gfor0<l#g<N-1

are evaluated in a single parallel subtraction step (not contributing to the order of magnitude
counts for the complexity of the algorithm). From Lemma 4.3 the calculation of all the o
terms in Eq. (14) above can be performed in O(log N + log M) parallel steps. All the factorial
coefficients can also be calculated in parallel in at most O(log M) steps by applying parallel
prefix (Corollary A.1). Thus the result follows. O

We now proceed to the second major step of the algorithm.

Lemma 4.4 Assuming all interaction terms A are available, for each value of q and i, all of

agti)(r;zq) ;or=0,...,1q

can be calculated in O(log? ti, + log N) parallel steps.

Proof First we note that if N = 1, then G reduces to Loy which is a diagonal matrix
consisting of terms % for k =0,..., M —1. From Corollary A.1 the evaluation can be completed
in time O(log M). The key to the proof when N > 1 is the observation that Eq. (13) for each

(ti)

of the needed terms g’ (r; 24) is a linear recurrence of order t;,. Hence at first all initial values

1

«a 32 -
! ! wt(ztl) (zq)

for 1 <i<nand 0 < ¢g < N — 1 must be computed. The most complicated term here
corresponds to ¢ = n with

wt(ltn)(zq) = (2g = 20)" ... (2g — 2g-1)"""" (2g = 2g41)P**" .. (zg — 2n—1)PV

= (zq - ZO)poil(zq —20) ... (zq - zqfl)pq_lil(zq - qul)-

(zq - zq+1)pq+1_l(zq - Zq+1) e (zq - ZN—I)pN_l_l(zq —ZN-1)

From Eq. (17) we have already available most partial products of the right hand side since
pi —1 =tn; — 1. In a single parallel step the partial products are completed by multiplying each
(zq — 2k)P* 1 with (24 — 2¢). This is done for all instances of ¢ and ¢;. The final products are
then calculated in O(log N) steps by means of parallel prefix. After a parallel division step, all
initial values a(ti)(O;zq) are available. Finally, the order t;, linear recurrences of Eq. (13) are
solved for each of

oz((]ti)(T;zq) forr=1,...,ty4

and each fixed value of ¢ and 7. From Theorem A.2 this can be done in parallel time O(log? tiq),
and the result follows. O

11



We have from Lemma 4.4 that all the recurrences, resulting as ¢ and g take their possible
values, can be solved concurrently in time at most O(log? M). The last two steps of the algorithm
are described in the proof of the main Theorem.

Theorem 4.1 All of the n generalized divided difference coefficients for the Hermite interpolat-
ing polynomial can be evaluated in O(log N + log? M) steps when M, N > 1.

Proof Using Lemma 3.1 we express each of the GDD as in Eq. (8). From Corollary 4.1 the
coefficients of all recurrences in Eq. (13) can be evaluated in time O(log M + log N). Next the
initial values for each of the recurrences are calculated in O(log N) steps as in Lemma 4.4. With
this information, the recurrences may be solved in time O(log? M). The next step evaluates the
Zi’igl summation of Eq. (8) since by now all the individual terms in the sum have been found.
For fixed 4 and ¢ this corresponds to a summation of ¢;; terms which can be done in at most
[log tiq] parallel steps. Hence all sums can be evaluated concurrently in time at most O(log M).
Finally all these independently calculated terms are added together using an additional O(log N)
parallel steps. This procedure is applied for all n instances of the index ¢ and all the GDD are
obtained in this manner. Adding the times obtained above the result follows. O

The next Corollary shows that the algorithm applied to the special cases of M = 1 (non-
osculatory interpolation) or N = 1 is equivalent to computing the divided differences for the
Newton form by means of the method in [8], or computing the coefficients of the truncated
Taylor expansion around zy respectively.

Corollary 4.2 1. When M = 1 the divided differences can be computed in 2[log N| + 2
parallel operations.

2. When N =1 the divided differences can be computed in O(log M) parallel operations.

Proof Let first M = 1. In this case p; = 1 for all ¢, n = N and

/—L
t;=(1,...,1,0,...,0)

First all of the z; —2; for 0 < ¢ #1 < N —1 are calculated in a single parallel subtraction. Since
all p;’s are equal to 1, the step described in Corollary 4.1 is empty. From Eq. (8), the formula
for the divided differences becomes

i—1
Jewy = Z {7;5)7%)

a=0 wq '’ (zg)

where
i—1
w((;i)(zq) = H (zq -z .
=0
L#q

The step described in Lemma 4.4 is reduced to the calculation of the initial values

alf) (03 24) = O
q

)

12



As in the Lemma this is done as follows: parallel prefix is used for each ¢ to calculate the
products

(zq — 2p)
(zq - zO)(Zq —21)

in [log(N — 1)] steps. After a parallel division step all of the
oz(gti)(O; 2q)

are obtained. Finally as described in Theorem 4.1 all the divided differences are computed by
summing in parallel in at most [log N| steps. The total time for the algorithm is thus found
to be exactly [log(N — 1)] + [log N'] + 2 which is at most 2[log N| + 2, agreeing with the time
given in Theorem 2.1. This proves the first part of the Lemma. When N =1 and M arbitrary,
Eqg. (8) reduces to

éifl)

Moreover G becomes the diagonal matrix Lgg. Now all the required terms can be calculated in
[log M| + 1 parallel steps using Corollary A.1. Clearly, this is equivalent to taking the first M
terms of the Taylor expansion for f(z) around z. O

We remark that in in [8] it is shown that the presented algorithm for M = 1 is practical, in the
sense that its numerical stability properties are similar to those of the serial algorithms.

5 Polynomial evaluation

As mentioned in [8], a fast algorithm for the interpolation would not be very useful unless an
algorithm of comparable speed could be designed for the evaluation.

Theorem 5.1 Given sufficiently many processors, a polynomial of degree n — 1 written in
its Newton representation can be evaluated in 2[logn| + 2 parallel arithmetic steps at points

{81,...,8k}.

Proof Since we are not concerned with the exact number of processors, there can be arbi-
trarily many points of evaluation. The proof holds irrespective of whether some x;s are equal
or not, and hence is a direct carry-over from [8]. First of all the values

s;—xzj; t=1,...,k; 7=0,...,n—1
are evaluated in one parallel step. Using parallel prefix and an extra multiplication the evaluation

of

i—1

i [[(si—z)}s i=1,...,n—1

Jj=0

for [ = 1,...,k can be achieved in [log(n — 1)] + 1 steps. A parallel summation algorithm for
each [ (e.g. parallel prefix or binary tree) for the partial results completes the algorithm in an
additional [logn] steps. O

13



6 Applications to Vandermonde systems
Using the combinatorial symbol
(N =N(N-1)---(N—r+1) ,

the confluent Vandermonde matrix corresponding to the distinct points {z,},¢ = 0,...,N —1
and the multiplicity vector p defined in Section 2 is of the form

U = (UolUh]-- |Un-1) (18)

where each of the blocks U, € RY*P« and

1 0 0 0

g 1 0 0

0= z 2z 2 0
a 5 322 624

2N (N = 11202 (N —1)22) % . (N —1)p,2g P
To solve the dual system
UTa=b (19)

a parallel solver could be applied directly. However as it happens with systems having a special
structure (e.g. Toeplitz), lower complexity algorithms can be obtained. The connection with
interpolation becomes clear after observing that the solution a of Eq. (19) is the vector of
coefficients of the unique polynomial p(z) such that p*¥)(z;) = f;, where §; is the i** element of
b. As before, the points z; come from the unrolling of the sequence 2, to include the repetitions.
The use of divided differences is frequently recommended ([3, 9, 27]). The algorithm, whose
sequential complexity is O(n?), proceeds in two distinct steps.

1. Compute the divided difference vector ¢ = [yg,...,Yn_1]7 corresponding to the interpola-
tion information pairs {z;,8;},1 =0,...,n — 1.

2. Transform the Newton form polynomial 37~ ; j-;%)(z — z;) into power form Syt

The uniqueness of polynomial interpolation implies a = [, . . -, o 1] .
Lemma 6.1 Given the pairs {v;,z;},i =0,...,n—1 for the Newton polynomial representation
n—1 -1
Poi(z) =Y v [[(z — =), (20)
i=0  j=0
the coefficients {a;},i = 0,...,n — 1 of the power form representation
n—1 )
Poi(z) =) aia’ (21)
i=0

can be computed in O(logn) parallel steps.

Proof (See also [17]). For i =0,...,n — 1, the power form for the product Hé;ﬁ (z —z;) can
be computed in parallel time O(log4) from Theorem A.3. One parallel step for the multiplication
with the ; and a O(log i) parallel addition to group the coefficients corresponding to z* returns
the results in time O(logn). O

14



When p = (1,...,1), the matrix U in Eq. (18) becomes

1 1 . . 1
20 23 P S zév_l
U— z1 22 2. z{v_l
= N-1
2 3 N-1
AN-1 ZN-1 #N-1 - AN-1

In [12] a parallel algorithm of time complexity O(N) is described for this case. Using the non-
confluent (M = 1) version of the algorithm described in this paper (see also [8]) steps (1) and
(2) can be completed in O(log N) parallel time. We summarize the discussion in the following
Lemma.

Lemma 6.2 The dual Vandermonde system in Eq. (19) can be solved using O(log? M + log N)
parallel operations.

7 Conclusions

We have described algorithms for parallel interpolation, evaluation and some applications. This
generalizes the work in [4, 8, 23]. The algorithms can be extended to handle the more general
problem of Hermite-Birkhoff interpolation ([6, 25]), whenever well-poised.

It could be argued that an actual implementation may be impractical since by the time
the size of the problem becomes large enough to justify the use of parallelism, polynomial
interpolation could break down due to ill-conditioning. Certain point distributions however will
delay this breakdown. The improvement in Lagrange interpolation when using Chebyshev rather
than equidistant points is well known. Computing a good set of points is a challenging problem
([10, 16]) and we point to recent work in [22, 26] for Newton interpolation. We also point to
[14] where an error analysis is performed of the divided difference based Vandermonde solver of
Bjorck and Pereyra and its success is explained.

The algorithms presented here make heavy use of the parallel prefix algorithm, as well as
of fast parallel algorithms for the solution of linear recurrences and polynomial multiplication.
Even though the required number of processors is polynomial in the input size, the issue of exact
processor count is left for future discussion. We only mention that if one is interested in the
processor — time tradeoffs, there are many possibilities even in the simplest case of M = 1. This
is mainly due to the variety of strategies one can follow for parallel prefix.

A Appendix

We review some known concepts and results which are used in the paper.

Let * be an associative binary operation on a set T. The prefix computation problem is
defined as follows: Given elements yi,...,y, € T compute all n initial products (prefixes)
y1*y2---*xy; for s = 1,...,n. Parallel algorithms for this computation are called parallel prefix
algorithms. The following result is well known and essential for the discussion ([19, 21]).

Theorem A.1 The n input parallel prefiz computation can be performed in [logn]| parallel time.

The next Corollary follows trivially from Theorem A.1,
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Corollary A.1 Given a positive integer n, all factorial terms

11,2130, ..., n!

can be computed in [logn]| parallel time.

The next results concern the parallel solution of lower triangular systems, or equivalently of
linear recurrences ([24]) and fast polynomial multiplication ([23]).

Theorem A.2 The triangular system of equations Lx = f, where L is a lower triangular matriz
of order m, can be solved in %log2 n + %logn + 3 parallel steps.

Theorem A.3 The coefficients of the power form representation of the product of m polynomi-
als with real coefficients of degree n — 1 each, can be computed in O(logmn) parallel steps.

Proof From [23, Theorem 2.3]. O
References

[1] A. AHO, HOPCROFT, J. E., AND ULLMAN, J. D. The Design and Analysis of Computer
Algorithms. Addison-Wesley, 1974.

[2] ATwooD, G. H. Parallel Lagrangian interpolation. In Proc. 1988 Intl. Conf. Paral. Proc.
(Aug. 1988), D. H. Bailey, Ed., pp. 120-123.

[3] BJORCK, A., AND PEREYRA, V. Solution of Vandermonde systems of equations. Math.
Comp. (1971), 893-903.

[4] CHIN, F. Y. A generalized asymptotic upper bound on fast polynomial evaluation. SIAM
J. Comput. 5 (1976), 682—-690.

[5] DAvis, P. J. Interpolation and Approzimation. Dover, 1975.

[6] ELSNER, L., AND MERZ, G. Lineare Punktfunktionale und Hermite-Birkhoff-Interpolation.
Beitrage zur Numerischen Mathematik 4 (1975), 69-82.

[7] EGECIOGLU, O., GALLOPOULOS, E., AND Kog, C. Parallel Hermite interpolation: An
algebraic approach. Tech. Rep. 671, Center for Supercomputing Research and Development,
University of Illinois at Urbana-Champaign, July 1987, to appear in Computing.

[8] EGEcioGLU, O., GALLOPOULOS, E., AND Kog, C. Fast and practical parallel polynomial
interpolation. Tech. Rep. 646, Center for Supercomputing Research and Development,
University of Illinois at Urbana-Champaign, January 1987.

[9] GALIMBERTI, G., AND PEREYRA, V. Solving confluent Vandermonde systems of Hermite
type. Numer. Math. 18 (1971), 44-60.

[10] GAuTscHI, W. Optimally conditioned Vandermonde matrices. Numer. Math. 24 (1975),
1-12.

[11] GEL’FOND, A. O. Calculus of Finite Differences. Hindustan Publishers, 1971.

[12] GOHBERG, I., KAmLATH, T., KOLTRACHT, I., AND LANCASTER, P. Linear complexity

parallel algorithms for linear systems of equations with recursive structure. Linear Algebra
and its Applications 88/89 (April 1987), 271-315.

16



[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

HEeNRrICI, P. Applied and Computational Complex Analysis. Vol. 1, Wiley, 1974.

HicuaMm, N. J. Error analysis of the Bjorck-Pereyra algorithms for solving Vandermonde
systems. Tech. Rep. Numer. Anal. 108, Department of Mathematics, University of Manch-
ester, December 1985.

Horowitz, E. A fast method for interpolation using preconditioning. IFIP Letters (1972),
157-163.

KILGORE, T. A. A characterization of the Lagrange interpolating projection with minimal
Chebyshev norm. J. Approz. Theory 24 (1978), 273-288.

Kog, C. Parallel algorithms for interpolation and approximation. PhD thesis, Dept. Elec.
Comput. Eng., University of California Santa Barbara, June 1988.

KrogH, F. Efficient algorithms for polynomial interpolation and divided differences. Math.
Comp. 24 (January 1970), 185-190.

KRUskAL, C. P., RubpoLPH, L., AND SNIR, M. The power of parallel prefix. IEEE Trans.
Comput. C-84, 10 (October 1985), 965-968.

Kung, H. T. Fast evaluation and interpolation. Tech. Rep., Department of Computer
Science, Carnegie-Mellon University, 1973.

LADNER, R., AND FISCHER, M. Parallel prefix computation. J. Assoc. Comput. Mach. 27
(1980), 831-838.

REICHEL, L. Newton interpolation in Fejér and Chebyshev points. Tech. Rep. 88/24, IBM
Bergen Scientific Centre, May 1988.

REIF, J. Logarithmic depth circuits for algebraic functions. SIAM J. Comput. 15 (1986),
231-242.

SAMEH, A. H., AND BRENT, R. Solving triangular systems on a parallel computer. STAM
J. Numer. Anal. 14 (1977), 1101-1113.

SHARMA, A. Some poised and nonpoised problems of interpolation. SIAM Rev. 14, 1
(January 1972), 129-151.

TAL-EZER, H. High degree interpolation polynomial in Newton form. Tech. Rep. 88-39,
ICASE, 1988.

Tang, W. P., AND GoLUB, G. H. The block decomposition of a Vandermonde matrix
and its applications. BIT 21 (1981), 505-517.

TRAUB, J. F. Iterative Methods for the Solution of Equations. Prentice-Hall, Englewood
Cliffs, N.J., 1964.

TsAo, N. K., AND PRrIOR, R. On multipoint numerical interpolation. ACM Trans. Math.
Softw. 4, 1 (March 1978), 51-56.

17



